pick your favorite books

Java Data Science Cookbook

Java Data Science Cookbook PDF
Author: Rushdi Shams
Publisher: Packt Publishing Ltd
ISBN: 1787127656
Size: 67.62 MB
Format: PDF
Category : Computers
Languages : en
Pages : 372
View: 2285

Get Book

Java Data Science Cookbook

by Rushdi Shams, Java Data Science Cookbook Books available in PDF, EPUB, Mobi Format. Download Java Data Science Cookbook books, Recipes to help you overcome your data science hurdles using Java About This Book This book provides modern recipes in small steps to help an apprentice cook become a master chef in data science Use these recipes to obtain, clean, analyze, and learn from your data Learn how to get your data science applications to production and enterprise environments effortlessly Who This Book Is For This book is for Java developers who are familiar with the fundamentals of data science and want to improve their skills to become a pro. What You Will Learn Find out how to clean and make datasets ready so you can acquire actual insights by removing noise and outliers Develop the skills to use modern machine learning techniques to retrieve information and transform data to knowledge. retrieve information from large amount of data in text format. Familiarize yourself with cutting-edge techniques to store and search large volumes of data and retrieve information from large amounts of data in text format Develop basic skills to apply big data and deep learning technologies on large volumes of data Evolve your data visualization skills and gain valuable insights from your data Get to know a step-by-step formula to develop an industry-standard, large-scale, real-life data product Gain the skills to visualize data and interact with users through data insights In Detail If you are looking to build data science models that are good for production, Java has come to the rescue. With the aid of strong libraries such as MLlib, Weka, DL4j, and more, you can efficiently perform all the data science tasks you need to. This unique book provides modern recipes to solve your common and not-so-common data science-related problems. We start with recipes to help you obtain, clean, index, and search data. Then you will learn a variety of techniques to analyze, learn from, and retrieve information from data. You will also understand how to handle big data, learn deeply from data, and visualize data. Finally, you will work through unique recipes that solve your problems while taking data science to production, writing distributed data science applications, and much more—things that will come in handy at work. Style and approach This book contains short yet very effective recipes to solve most common problems. Some recipes cater to very specific, rare pain points. The recipes cover different data sets and work very closely to real production environments




Apache Spark For Data Science Cookbook

Apache Spark for Data Science Cookbook PDF
Author: Padma Priya Chitturi
Publisher: Packt Publishing Ltd
ISBN: 1785288806
Size: 78.65 MB
Format: PDF, Docs
Category : Computers
Languages : en
Pages : 392
View: 2972

Get Book

Apache Spark For Data Science Cookbook

by Padma Priya Chitturi, Apache Spark For Data Science Cookbook Books available in PDF, EPUB, Mobi Format. Download Apache Spark For Data Science Cookbook books, Over insightful 90 recipes to get lightning-fast analytics with Apache Spark About This Book Use Apache Spark for data processing with these hands-on recipes Implement end-to-end, large-scale data analysis better than ever before Work with powerful libraries such as MLLib, SciPy, NumPy, and Pandas to gain insights from your data Who This Book Is For This book is for novice and intermediate level data science professionals and data analysts who want to solve data science problems with a distributed computing framework. Basic experience with data science implementation tasks is expected. Data science professionals looking to skill up and gain an edge in the field will find this book helpful. What You Will Learn Explore the topics of data mining, text mining, Natural Language Processing, information retrieval, and machine learning. Solve real-world analytical problems with large data sets. Address data science challenges with analytical tools on a distributed system like Spark (apt for iterative algorithms), which offers in-memory processing and more flexibility for data analysis at scale. Get hands-on experience with algorithms like Classification, regression, and recommendation on real datasets using Spark MLLib package. Learn about numerical and scientific computing using NumPy and SciPy on Spark. Use Predictive Model Markup Language (PMML) in Spark for statistical data mining models. In Detail Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark's selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease. This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark's data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work. Style and approach This book contains a comprehensive range of recipes designed to help you learn the fundamentals and tackle the difficulties of data science. This book outlines practical steps to produce powerful insights into Big Data through a recipe-based approach.




R For Data Science Cookbook

R for Data Science Cookbook PDF
Author: Yu-Wei, Chiu (David Chiu)
Publisher: Packt Publishing Ltd
ISBN: 1784392049
Size: 59.35 MB
Format: PDF
Category : Computers
Languages : en
Pages : 452
View: 4643

Get Book

R For Data Science Cookbook

by Yu-Wei, Chiu (David Chiu), R For Data Science Cookbook Books available in PDF, EPUB, Mobi Format. Download R For Data Science Cookbook books, Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques About This Book Gain insight into how data scientists collect, process, analyze, and visualize data using some of the most popular R packages Understand how to apply useful data analysis techniques in R for real-world applications An easy-to-follow guide to make the life of data scientist easier with the problems faced while performing data analysis Who This Book Is For This book is for those who are already familiar with the basic operation of R, but want to learn how to efficiently and effectively analyze real-world data problems using practical R packages. What You Will Learn Get to know the functional characteristics of R language Extract, transform, and load data from heterogeneous sources Understand how easily R can confront probability and statistics problems Get simple R instructions to quickly organize and manipulate large datasets Create professional data visualizations and interactive reports Predict user purchase behavior by adopting a classification approach Implement data mining techniques to discover items that are frequently purchased together Group similar text documents by using various clustering methods In Detail This cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently. The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the “dplyr” and “data.table” packages to efficiently process larger data structures. We also focus on “ggplot2” and show you how to create advanced figures for data exploration. In addition, you will learn how to build an interactive report using the “ggvis” package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction. By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis. Style and approach This easy-to-follow guide is full of hands-on examples of data analysis with R. Each topic is fully explained beginning with the core concept, followed by step-by-step practical examples, and concluding with detailed explanations of each concept used.




Java Cookbook

Java Cookbook PDF
Author: Ian F. Darwin
Publisher: "O'Reilly Media, Inc."
ISBN: 1492072532
Size: 14.45 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 638
View: 6028

Get Book

Java Cookbook

by Ian F. Darwin, Java Cookbook Books available in PDF, EPUB, Mobi Format. Download Java Cookbook books, Java continues to grow and evolve, and this cookbook continues to evolve in tandem. With this guide, you’ll get up to speed right away with hundreds of hands-on recipes across a broad range of Java topics. You’ll learn useful techniques for everything from string handling and functional programming to network communication. Each recipe includes self-contained code solutions that you can freely use, along with a discussion of how and why they work. If you’re familiar with Java basics, this cookbook will bolster your knowledge of the language and its many recent changes, including how to apply them in your day-to-day development. This updated edition covers changes through Java 12 and parts of 13 and 14. Recipes include: Methods for compiling, running, and debugging Packaging Java classes and building applications Manipulating, comparing, and rearranging text Regular expressions for string and pattern matching Handling numbers, dates, and times Structuring data with collections, arrays, and other types Object-oriented and functional programming techniques Input/output, directory, and filesystem operations Network programming on both client and server Processing JSON for data interchange Multithreading and concurrency Using Java in big data applications Interfacing Java with other languages




Natural Language Processing With Java Cookbook

Natural Language Processing with Java Cookbook PDF
Author: Richard M. Reese
Publisher: Packt Publishing Ltd
ISBN: 1789808839
Size: 23.34 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 386
View: 3458

Get Book

Natural Language Processing With Java Cookbook

by Richard M. Reese, Natural Language Processing With Java Cookbook Books available in PDF, EPUB, Mobi Format. Download Natural Language Processing With Java Cookbook books, A problem-solution guide to encounter various NLP tasks utilizing Java open source libraries and cloud-based solutions Key Features Perform simple-to-complex NLP text processing tasks using modern Java libraries Extract relationships between different text complexities using a problem-solution approach Utilize cloud-based APIs to perform machine translation operations Book Description Natural Language Processing (NLP) has become one of the prime technologies for processing very large amounts of unstructured data from disparate information sources. This book includes a wide set of recipes and quick methods that solve challenges in text syntax, semantics, and speech tasks. At the beginning of the book, you'll learn important NLP techniques, such as identifying parts of speech, tagging words, and analyzing word semantics. You will learn how to perform lexical analysis and use machine learning techniques to speed up NLP operations. With independent recipes, you will explore techniques for customizing your existing NLP engines/models using Java libraries such as OpenNLP and the Stanford NLP library. You will also learn how to use NLP processing features from cloud-based sources, including Google and Amazon’s AWS. You will master core tasks, such as stemming, lemmatization, part-of-speech tagging, and named entity recognition. You will also learn about sentiment analysis, semantic text similarity, language identification, machine translation, and text summarization. By the end of this book, you will be ready to become a professional NLP expert using a problem-solution approach to analyze any sort of text, sentences, or semantic words. What you will learn Explore how to use tokenizers in NLP processing Implement NLP techniques in machine learning and deep learning applications Identify sentences within the text and learn how to train specialized NER models Learn how to classify documents and perform sentiment analysis Find semantic similarities between text elements and extract text from a variety of sources Preprocess text from a variety of data sources Learn how to identify and translate languages Who this book is for This book is for data scientists, NLP engineers, and machine learning developers who want to perform their work on linguistic applications faster with the use of popular libraries on JVM machines. This book will help you build real-world NLP applications using a recipe-based approach. Prior knowledge of Natural Language Processing basics and Java programming is expected.




Scala Guide For Data Science Professionals

Scala  Guide for Data Science Professionals PDF
Author: Pascal Bugnion
Publisher: Packt Publishing Ltd
ISBN: 1787281035
Size: 26.12 MB
Format: PDF
Category : Computers
Languages : en
Pages : 1100
View: 5800

Get Book

Scala Guide For Data Science Professionals

by Pascal Bugnion, Scala Guide For Data Science Professionals Books available in PDF, EPUB, Mobi Format. Download Scala Guide For Data Science Professionals books, Scala will be a valuable tool to have on hand during your data science journey for everything from data cleaning to cutting-edge machine learning About This Book Build data science and data engineering solutions with ease An in-depth look at each stage of the data analysis process — from reading and collecting data to distributed analytics Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulations, and source code Who This Book Is For This learning path is perfect for those who are comfortable with Scala programming and now want to enter the field of data science. Some knowledge of statistics is expected. What You Will Learn Transfer and filter tabular data to extract features for machine learning Read, clean, transform, and write data to both SQL and NoSQL databases Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Load data from HDFS and HIVE with ease Run streaming and graph analytics in Spark for exploratory analysis Bundle and scale up Spark jobs by deploying them into a variety of cluster managers Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Master probabilistic models for sequential data In Detail Scala is especially good for analyzing large sets of data as the scale of the task doesn't have any significant impact on performance. Scala's powerful functional libraries can interact with databases and build scalable frameworks — resulting in the creation of robust data pipelines. The first module introduces you to Scala libraries to ingest, store, manipulate, process, and visualize data. Using real world examples, you will learn how to design scalable architecture to process and model data — starting from simple concurrency constructs and progressing to actor systems and Apache Spark. After this, you will also learn how to build interactive visualizations with web frameworks. Once you have become familiar with all the tasks involved in data science, you will explore data analytics with Scala in the second module. You'll see how Scala can be used to make sense of data through easy to follow recipes. You will learn about Bokeh bindings for exploratory data analysis and quintessential machine learning with algorithms with Spark ML library. You'll get a sufficient understanding of Spark streaming, machine learning for streaming data, and Spark graphX. Armed with a firm understanding of data analysis, you will be ready to explore the most cutting-edge aspect of data science — machine learning. The final module teaches you the A to Z of machine learning with Scala. You'll explore Scala for dependency injections and implicits, which are used to write machine learning algorithms. You'll also explore machine learning topics such as clustering, dimentionality reduction, Naive Bayes, Regression models, SVMs, neural networks, and more. This learning path combines some of the best that Packt has to offer into one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala Data Analysis Cookbook, Arun Manivannan Scala for Machine Learning, Patrick R. Nicolas Style and approach A complete package with all the information necessary to start building useful data engineering and data science solutions straight away. It contains a diverse set of recipes that cover the full spectrum of interesting data analysis tasks and will help you revolutionize your data analysis skills using Scala.




Scala Data Analysis Cookbook

Scala Data Analysis Cookbook PDF
Author: Arun Manivannan
Publisher: Packt Publishing Ltd
ISBN: 1784394998
Size: 63.93 MB
Format: PDF
Category : Computers
Languages : en
Pages : 254
View: 6680

Get Book

Scala Data Analysis Cookbook

by Arun Manivannan, Scala Data Analysis Cookbook Books available in PDF, EPUB, Mobi Format. Download Scala Data Analysis Cookbook books, Navigate the world of data analysis, visualization, and machine learning with over 100 hands-on Scala recipes About This Book Implement Scala in your data analysis using features from Spark, Breeze, and Zeppelin Scale up your data anlytics infrastructure with practical recipes for Scala machine learning Recipes for every stage of the data analysis process, from reading and collecting data to distributed analytics Who This Book Is For This book shows data scientists and analysts how to leverage their existing knowledge of Scala for quality and scalable data analysis. What You Will Learn Familiarize and set up the Breeze and Spark libraries and use data structures Import data from a host of possible sources and create dataframes from CSV Clean, validate and transform data using Scala to pre-process numerical and string data Integrate quintessential machine learning algorithms using Scala stack Bundle and scale up Spark jobs by deploying them into a variety of cluster managers Run streaming and graph analytics in Spark to visualize data, enabling exploratory analysis In Detail This book will introduce you to the most popular Scala tools, libraries, and frameworks through practical recipes around loading, manipulating, and preparing your data. It will also help you explore and make sense of your data using stunning and insightfulvisualizations, and machine learning toolkits. Starting with introductory recipes on utilizing the Breeze and Spark libraries, get to grips withhow to import data from a host of possible sources and how to pre-process numerical, string, and date data. Next, you'll get an understanding of concepts that will help you visualize data using the Apache Zeppelin and Bokeh bindings in Scala, enabling exploratory data analysis. iscover how to program quintessential machine learning algorithms using Spark ML library. Work through steps to scale your machine learning models and deploy them into a standalone cluster, EC2, YARN, and Mesos. Finally dip into the powerful options presented by Spark Streaming, and machine learning for streaming data, as well as utilizing Spark GraphX. Style and approach This book contains a rich set of recipes that covers the full spectrum of interesting data analysis tasks and will help you revolutionize your data analysis skills using Scala and Spark.




Java Cookbook 4th Edition

Java Cookbook  4th Edition PDF
Author: Ian Darwin
Publisher:
ISBN:
Size: 78.88 MB
Format: PDF, ePub, Mobi
Category :
Languages : en
Pages : 600
View: 393

Get Book

Java Cookbook 4th Edition

by Ian Darwin, Java Cookbook 4th Edition Books available in PDF, EPUB, Mobi Format. Download Java Cookbook 4th Edition books, Java continues to grow and evolve, and this Cookbook continues to evolve in tandem. This book helps to get you up to speed right away with hundreds of hands-on recipes across a broad range of Java topics. You'll learn useful techniques for everything from string handling and functional programming to network communication. Each recipe includes self-contained code solutions that you can freely use, along with a discussion of how and why they work. If you are familiar with the basics of the Java language, this cookbook will bolster your knowledge of the language in general and its many recent changes and how to apply them in your day-to-day development. Recipes include: Methods for compiling, running, and debugging "Packaging" Java classes and building applications Manipulating, comparing, and rearranging text Regular expressions for string- and pattern-matching Handling numbers, dates, and times Structuring data with collections, arrays, and other types Object-oriented and functional programming techniques Input/Output, Directory and filesystem operations Network programming on both client and server Processing JSON for data interchange Multithreading and concurrency Using Java in Big Data applications Interfacing Java with other languages The 4th Edition of this book has been updated to cover changes through Java 12 and includes new recipes for Big Data and data science.




Big Data Analytics With R And Hadoop

Big Data Analytics with R and Hadoop PDF
Author: Vignesh Prajapati
Publisher: Packt Publishing Ltd
ISBN: 1782163298
Size: 36.91 MB
Format: PDF
Category : Computers
Languages : en
Pages : 238
View: 5589

Get Book

Big Data Analytics With R And Hadoop

by Vignesh Prajapati, Big Data Analytics With R And Hadoop Books available in PDF, EPUB, Mobi Format. Download Big Data Analytics With R And Hadoop books, Big Data Analytics with R and Hadoop is a tutorial style book that focuses on all the powerful big data tasks that can be achieved by integrating R and Hadoop.This book is ideal for R developers who are looking for a way to perform big data analytics with Hadoop. This book is also aimed at those who know Hadoop and want to build some intelligent applications over Big data with R packages. It would be helpful if readers have basic knowledge of R.




Learning Jupyter 5

Learning Jupyter 5 PDF
Author: Dan Toomey
Publisher: Packt Publishing Ltd
ISBN: 1789137446
Size: 79.81 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 282
View: 4065

Get Book

Learning Jupyter 5

by Dan Toomey, Learning Jupyter 5 Books available in PDF, EPUB, Mobi Format. Download Learning Jupyter 5 books, Create and share livecode, equations, visualizations, and explanatory text, in both a single document and a web browser with Jupyter Key Features Learn how to use Jupyter 5.x features such as cell tagging and attractive table styles Leverage big data tools and datasets with different Python packages Explore multiple-user Jupyter Notebook servers Book Description The Jupyter Notebook allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, and machine learning. Learning Jupyter 5 will help you get to grips with interactive computing using real-world examples. The book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next, you will learn to integrate the Jupyter system with different programming languages such as R, Python, Java, JavaScript, and Julia, and explore various versions and packages that are compatible with the Notebook system. Moving ahead, you will master interactive widgets and namespaces and work with Jupyter in a multi-user mode. By the end of this book, you will have used Jupyter with a big dataset and be able to apply all the functionalities you’ve explored throughout the book. You will also have learned all about the Jupyter Notebook and be able to start performing data transformation, numerical simulation, and data visualization. What you will learn Install and run the Jupyter Notebook system on your machine Implement programming languages such as R, Python, Julia, and JavaScript with the Jupyter Notebook Use interactive widgets to manipulate and visualize data in real time Start sharing your Notebook with colleagues Invite your colleagues to work with you on the same Notebook Organize your Notebook using Jupyter namespaces Access big data in Jupyter for dealing with large datasets using Spark Who this book is for Learning Jupyter 5 is for developers, data scientists, machine learning users, and anyone working on data analysis or data science projects across different teams. Data science professionals will also find this book useful for performing technical and scientific computing collaboratively.