pick your favorite books

Plasmonic Intracellular Delivery

Plasmonic Intracellular Delivery PDF
Author: Marinna Madrid
Publisher:
ISBN:
Size: 32.32 MB
Format: PDF
Category : Science
Languages : en
Pages :
View: 991

Get Book

Plasmonic Intracellular Delivery

by Marinna Madrid, Plasmonic Intracellular Delivery Books available in PDF, EPUB, Mobi Format. Download Plasmonic Intracellular Delivery books, This chapter describes the significance of plasmonics to the field of intracellular delivery. We begin by discussing the significance of intracellular delivery, its applications in biology and medicine, and the currently available intracellular delivery techniques. Next, we discuss the field of plasmonic intracellular delivery, beginning with the discovery of optoporation. In optoporation, a laser beam is tightly focused onto a cell membrane to generate a transient pore, through which membrane-impermeable cargo can enter the cell. To improve the throughput of this technique, plasmonic materials were used for their ability to efficiently absorb laser light and generate spatially confined electric fields. Here, we describe the process by which plasmonic materials absorb laser light energy and generate plasmons. These plasmons transfer their energy to their surroundings, resulting in a rise in temperature and the subsequent creation of a bubble or shockwave. Finally, we describe how the properties of plasmons and plasmon-mediated effects facilitate cell poration for intracellular delivery.




Plasmonics

Plasmonics PDF
Author: Tatjana Gric
Publisher: BoD – Books on Demand
ISBN: 1789844347
Size: 10.79 MB
Format: PDF, ePub, Docs
Category : Science
Languages : en
Pages : 252
View: 3391

Get Book

Plasmonics

by Tatjana Gric, Plasmonics Books available in PDF, EPUB, Mobi Format. Download Plasmonics books, Plasmonics gives researchers in universities and industries and designers an overview of phenomena enabled by artificially designed metamaterials and their application for plasmonic devices. The purpose of this book is to provide a detailed introduction to the basic modeling approaches and an overview of enabled innovative phenomena. The main research agenda of this book is aimed at the study of modeling techniques and novel functionalities such as plasmonic enhancement of solar cell efficiency, plasmonics in sensing, etc. The topics addressed in this book cover the major strands: theory, modeling and design, applications in practical devices, fabrication, characterization, and measurement. It is worthwhile mentioning that the strategic objectives of developing new artificial functional materials require close cooperation of the research in each subarea.




Photothermal Intracellular Delivery Platforms

Photothermal Intracellular Delivery Platforms PDF
Author: Tianxing Man
Publisher:
ISBN:
Size: 38.80 MB
Format: PDF, Kindle
Category :
Languages : en
Pages : 102
View: 2493

Get Book

Photothermal Intracellular Delivery Platforms

by Tianxing Man, Photothermal Intracellular Delivery Platforms Books available in PDF, EPUB, Mobi Format. Download Photothermal Intracellular Delivery Platforms books, Intracellular delivery of diverse biomolecules, such as protein, nucleic acids, nano-devices, has been of great importance and interest in biomedical fields like cancer therapy, gene editing and intracellular environment probing. Although tremendous effort has been expended, it remains challenging for existing transfer platforms to meet the emerging requirements of the cutting-edge research. In this thesis, I focused on three major hurdles in the current intracellular delivery, which are suspension cell delivery, complexity of incorporating nanotechnology, and large cargo delivery. Photothermal mechanism is the underlying physics throughout all the work to be introduced here. It utilizes the light energy and transforms it into thermal energy and then into mechanical energy, serving for different functions in delivery. Nanosecond laser was chosen as the original power tool due to its high energy density, remote operation capability, and selective absorption. The combination of laser and micro/nano structure has been extensively explored to develop various delivery capabilities. The first problem tackled in this thesis is to deliver materials into suspension cells with high efficiency, viability, and throughput. Suspension cells, especially lymphocytes, which represent 25-30% of immune cells, are of great interest in cancer immunotherapies and known as hard-to-transfect cells. To achieve effective delivery, the microwell structure with metallic sharp tips were designed to provide both cell anchoring and controllable membrane disruption on each cell. Suspension cells self- position by gravity within each microwell in direct contact with eight sharp tips, where laser-induced cavitation bubbles generate transient pores in the cell membrane to facilitate intracellular delivery of extracellular cargo. A range of cargo sizes were tested on this platform using Ramos suspension B cells with an efficiency of >84% for Calcein green (0.6 kDa) and >45% for FITC-dextran (2000 kDa), with retained viability of >96% and a throughput of >100 000 cells delivered per minute. The bacterial enzyme -lactamase (29 kDa) was delivered into Ramos B cells and retained its biological activity, whereas a green fluorescence protein expression plasmid was delivered into Ramos B cells with a transfection efficiency of >58%, and a viability of >89% achieved. The second problem raised from the notice of the huge potential of nanostructures, especially combined with photothermal mechanism, in contrast with their current limited applications in this field. Nanostructures, such as nanoneedle array, have been adopted in the intracellular delivery field due to its unique scale advantages, including minimal damage of the cell membrane and large cargo loading capacity from high surface-to-volume ratio. However, nanotechnologies have suffered from its complexity of high-precision fabrication and are limited to small area. Thus, we demonstrate the fabrication of large-area plasmonic gold (Au) nanodisk arrays that enable photothermal intracellular delivery of biomolecular cargo at high efficiency. The Au nanodisks (350 nm in diameter) were fabricated using chemical lift-off lithography (CLL), a high-throughput and low-cost for nanoscale chemical patterning. This technique is applied to produce Au nanostructures on a variety of substrates (e.g., silicon, glass, and plastic), which facilitate in situ intracellular delivery in laboratory cell culture environments, enabling integration with existing medical devices. Nanosecond laser pulses were used to excite the plasmonic nanostructures, thereby generating transient pores at the outer membranes of targeted cells that enable the delivery of biomolecules via diffusion. We studied nanodisks of various sizes and found that an increase in delivery efficiency correlated with decreasing disk radius, which we attribute to higher density of pores per cell. Delivery efficiencies of >98% were achieved with 1- m Au plasmonic disk arrays, using the cell impermeable dye Calcein (0.6 kDa) as a model payload, while maintaining cell viabilities at >98%. The highly efficient intracellular delivery approach demonstrated in this work will facilitate translational studies targeting molecular screening and drug testing that bridge laboratory and clinical investigations. Despite that major problems were nicely solved in the prior two projects, an apparent drawback appears, as the delivery efficiency drops significantly when cargo size increases. Photothermal energy was adopted, in both projects, to generate bubble explosion near the adjacent cell membrane so as to disrupt the membrane. Cargoes had to passively diffuse into the membrane, which posed the hardship to large cargoes. Thus, in the third project, the integration of membrane disruption and active pumping was studied to facilitate large cargo delivery with precise control and large-area uniformity. We utilized the high initial pressure of the laser-induced bubbles as the pump source for high-speed fluidic jet, which cuts the cell membrane and delivers cargos into the cytosol and nucleus. The fabrication processes of the devices are designed to be conventional and simple with large-area uniformity. The penetration was demonstrated by injecting 140 nm polystyrene beads into Agarose hydrogel which was prepared to have similar Young's Modulus as cells. With delicate device designs, we achieved penetration depths from tens of microns to a hundred microns, indicating the capability of three-dimensional tissue delivery and epidermal in vivo delivery, besides intracellular delivery into single layer of cells.




Intracellular Delivery Ii

Intracellular Delivery II PDF
Author: Aleš Prokop
Publisher: Springer
ISBN: 9401788960
Size: 31.62 MB
Format: PDF
Category : Medical
Languages : en
Pages : 479
View: 5727

Get Book

Intracellular Delivery Ii

by Aleš Prokop, Intracellular Delivery Ii Books available in PDF, EPUB, Mobi Format. Download Intracellular Delivery Ii books, This volume is a continuation of Volume 1 following the previously published Editorial. More emphasis is given to novel nanocarrier designs, their characterization and function, and applications for drug discovery and treatment. A number of chapters will deal with nanofibers as a new major application within the biomedical field with a very high success rate particularly in wound healing and diabetic foot and spine injuries. A major new subdivision will deal with mathematical methods for the assembly of nanocarriers both for simulation and function.




Nanosphere Lithography For Intracellular Delivery

Nanosphere Lithography for Intracellular Delivery PDF
Author: Natcha Wattanatorn
Publisher:
ISBN:
Size: 46.26 MB
Format: PDF, Docs
Category :
Languages : en
Pages : 214
View: 3469

Get Book

Nanosphere Lithography For Intracellular Delivery

by Natcha Wattanatorn, Nanosphere Lithography For Intracellular Delivery Books available in PDF, EPUB, Mobi Format. Download Nanosphere Lithography For Intracellular Delivery books, Nanosphere lithography (NSL) is a simple, high-throughput technique that can be used to form large-area, close-packed monolayer arrays of nanospheres. These arrays can be directly used as an etching or as a deposition mask, to generate silicon-based nanostructures. Typically, the nanostructures produced are created by single etches of the nanosphere array resulting in limitations in fabrication of novel patterns/nanostructures. Here, we report multiple patterning nanosphere lithography for fabrication of three-dimensional periodic silicon-based nanostructures, exploiting their degradable nature during selected and repeated etching of the polymer nanospheres. As a result, the masks can be shaped in parallel for each processing step enabling the fabrication of wafer-scale three-dimensional (3D) periodic silicon nanostructures. These nanotubes and hierarchical nanostructures can be tuned precisely with independent control in three dimensions including outer/inner diameters, heights/hole-depths, and pitches. We have demonstrated our technique to construct solid/hollow nanotubes, multilevel solid/hollow nanotowers, and 3D concentric plasmonic nanodisk/nanorings with tunable optical properties on a variety of substrates. In the second part of my dissertation, I used NSL to fabricate periodic arrays of conical nanoneedles for non-viral gene delivery for chimeric antigen receptor (CAR) T cell production. Gene delivery using non-viral methods has significant advantages in terms of safe delivery of cargo and cost. Especially, physical membrane disruption via nanoneedles has the capability to inject and deliver molecules of interest directly as well as the capability to create transient pores in the cell membrane, enabling biomolecule diffusion into the cells. However, the challenges for these systems include inconsistency of membrane penetration and slow processing throughputs. Here, we use a nanoneedle-integrated microfluidic system and gene-encapsulated supramolecular nanoparticle for production of CAR-T cells, in both model and primary T cells. Using NSL, we can achieve conical shaped silicon nanoneedles, where the height, base width, tip sharpness, and pitches are individually tunable, resulting in sturdy structures that can penetrate the cells. With this platform, we can efficiently load CAR plasmids inside nanoparticles, which are tethered to the substrate for direct injection, as well as co-flow an excess of CAR encapsulated nanoparticles, for diffusion through transient pores that are created by the nanoneedles. This platform enables continuous and sequential intracellular delivery, which provides a path for sustainable CAR-T cell production.




Plasmonics In Chemistry And Biology

Plasmonics in Chemistry and Biology PDF
Author: Marc Lamy de la Chapelle
Publisher: CRC Press
ISBN: 0429858671
Size: 29.85 MB
Format: PDF, Mobi
Category : Science
Languages : en
Pages : 308
View: 3392

Get Book

Plasmonics In Chemistry And Biology

by Marc Lamy de la Chapelle, Plasmonics In Chemistry And Biology Books available in PDF, EPUB, Mobi Format. Download Plasmonics In Chemistry And Biology books, Over the past decade, plasmonic nanoparticles have been the subject of extensive research, owing to their remarkable optical properties. These properties arise from a collective oscillation of the conductive electrons at the nanoparticle surface under light irradiation, known as localized surface plasmon (LSP). LSP is characterized by (i) a strong absorption and scattering of the light depending on the geometrical parameters of the nanoparticles and (ii) a strong amplification of the local field in the vicinity of the nanoparticles. Quite recently, it was shown that the activation and the initiation of chemical reactions or physical processes can be facilitated using LSP excitation. Such exploitation presents two main advantages: an enhanced yield and a fine control of chemical reactions at the nanoscale. These topics have become very active and are in line with molecular plasmonics. This book explores this new field and provides a broad view on the exploitation of plasmonics in chemical and biological fields.




Colloidal Synthesis Of Plasmonic Nanometals

Colloidal Synthesis of Plasmonic Nanometals PDF
Author: Luis Liz-Marzán
Publisher: CRC Press
ISBN: 1000021300
Size: 18.54 MB
Format: PDF, ePub
Category : Medical
Languages : en
Pages : 890
View: 4809

Get Book

Colloidal Synthesis Of Plasmonic Nanometals

by Luis Liz-Marzán, Colloidal Synthesis Of Plasmonic Nanometals Books available in PDF, EPUB, Mobi Format. Download Colloidal Synthesis Of Plasmonic Nanometals books, Noble metal nanoparticles have attracted enormous scientific and technological interest because of their unique optical properties, which are related to surface plasmon resonances. The interest in nanosized metal particles dates back to ancient societies, when metals were used in various forms as decorative elements. From the famous Lycurgus cup, made by the Romans in the 4th century AD, through thousands of stained glasses in churches and cathedrals all over medieval Europe, bright-yellow, green, or red colors have been obtained by a touch of metallic additions during glass blowing. This peculiar interaction of light with nanometals can be widely tuned through the morphology and assembly of nanoparticles, thereby expanding the range of potential applications, from energy and information storage to biomedicine, including novel diagnostic and therapeutic methods. This book compiles recent developments that clearly illustrate the state of the art in this cutting-edge research field. It comprises different review articles written by the teams of Prof. Luis Liz-Marzán, an international leader in chemical nanotechnology who has made seminal contributions to the use of colloid chemistry methods to understand and tailor the growth of metal particles at the nanoscale. Apart from synthesis, the book also describes in detail the plasmonic properties of nanomaterials and illustrates some representative applications. This book will appeal to anyone involved in nanotechnology, nanocrystal growth, nanoplasmonics, and surface-enhanced spectroscopies.




Engineering In Translational Medicine

Engineering in Translational Medicine PDF
Author: Weibo Cai
Publisher: Springer Science & Business Media
ISBN: 1447143728
Size: 68.64 MB
Format: PDF, Mobi
Category : Technology & Engineering
Languages : en
Pages : 999
View: 5593

Get Book

Engineering In Translational Medicine

by Weibo Cai, Engineering In Translational Medicine Books available in PDF, EPUB, Mobi Format. Download Engineering In Translational Medicine books, This book covers a broad area of engineering research in translational medicine. Leaders in academic institutions around the world contributed focused chapters on a broad array of topics such as: cell and tissue engineering (6 chapters), genetic and protein engineering (10 chapters), nanoengineering (10 chapters), biomedical instrumentation (4 chapters), and theranostics and other novel approaches (4 chapters). Each chapter is a stand-alone review that summarizes the state-of-the-art of the specific research area. Engineering in Translational Medicine gives readers a comprehensive and in-depth overview of a broad array of related research areas, making this an excellent reference book for scientists and students both new to engineering/translational medicine and currently working in this area. The ability for engineering approaches to change biomedical research are increasing and having significant impact. Development of basic assays and their numerous applications are allowing for many new discoveries and should eventually impact human health. This book brings together many diverse yet related topics to give the reader a solid overview of many important areas that are not found together elsewhere. Dr. Weibo Cai has taken great care to select key research leaders of many sub-disciplines who have put together very detailed chapters that are easy to read yet highly rich in content. _______________ This book brings together many diverse yet related topics to give the reader a solid overview of many important areas that are not found together elsewhere. Dr. Weibo Cai has taken great care to select key research leaders of many sub-disciplines who have put together very detailed chapters that are easy to read yet highly rich in content. It is very exciting to see such a great set of chapters all together to allow one to have a key understanding of many different areas including cell, gene, protein, and nano engineering as well as the emerging field of theranostics. I am sure the readers will find this collection of important chapters helpful in their own research and understanding of how engineering has and will continue to play a critical role in biomedical research and clinical translation. Sanjiv Sam Gambhir M.D., Ph.D. Stanford University, USA Engineering in Translational Medicine is a landmark book bridging the fields of engineering and medicine with a focus on translational technologies and methods. In a single, well-coordinated volume, this book brings together contributions from a strong and international scientific cast, broadly covering the topics. The book captures the tremendous opportunities made possible by recent developments in bioengineering, and highlights the potential impact of these advances across a broad spectrum of pressing health care needs. The book can equally serve as a text for graduate level courses, a reference source, a book to be dipped into for pleasure by those working within the field, or a cover-to-cover read for those wanting a comprehensive, yet readable introduction to the current state of engineering advances and how they are impacting translational medicine. Simon R. Cherry, Ph.D. University of California, Davis, USA